ComeçarComece de graça

Identifying model drift

Now you'll plot the model scores over time to visualize when drift occurs. By adding the threshold line and RMSE rolling windows, you can see how the trailing error lines indicate performance degradation.

The fc_log dataset with calculated moving averages, rmse_threshold, and Plotly as go have been pre-loaded for you.

Este exercício faz parte do curso

Designing Forecasting Pipelines for Production

Ver curso

Exercício interativo prático

Experimente este exercício completando este código de exemplo.

p = go.Figure()

# Add RMSE line
p.add_trace(go.Scatter(x=fc_log["forecast_start"], y=fc_log["____"],
                        mode='lines',
                        name='RMSE',
                        line=dict(color='royalblue', width=2)))

# Add the RMSE rolling windows for 7 and 14 days
p.add_trace(go.Scatter(x=fc_log["forecast_start"], y=fc_log["____"],
                        mode='lines',
                        name='7 Days MA',
                        line=dict(color='green', width=2)))

p.add_trace(go.Scatter(x=fc_log["forecast_start"], y=fc_log["____"],
                        mode='lines',
                        name='14 Days MA',
                        line=dict(color='orange', width=2)))

p.add_trace(go.Scatter(x=[fc_log["forecast_start"].min(), fc_log["forecast_start"].max()], 
y=[rmse_threshold, rmse_threshold], 
name="Threshold",
line=dict(color="red", width=2, dash="dash")))

# Add plot titles and show the plot
p.update_layout(title="Forecast Error Rate Over Time",
                xaxis_title="____",
                yaxis_title="____", 
                height=400,
                title_x=0.5,
                margin=dict(t=50, b=50, l=50, r=50))
p.show()
Editar e executar o código