Defining the schema
Let's start by defining the expected schema for data validation. This is a critical step in ensuring data quality throughout the ETL pipeline.
You'll use the pointblank library to define the schema structure.
The dataset has already been loaded for you as ts.
Este exercício faz parte do curso
Designing Forecasting Pipelines for Production
Instruções do exercício
- Start by importing
pointblank. - Define the schema using the right method.
- Set the
respondentcolumn toobjecttype andvaluecolumn tofloat64type.
Exercício interativo prático
Experimente este exercício completando este código de exemplo.
# Import the required library
import ____ as ____
# Define the schema and set columns
table_schema = pb.____(
columns=[
("period", "datetime64[ns]"),
("respondent", "____"),
("respondent-name", "object"),
("type", "object"),
("type-name", "object"),
("value", "____"),
("value-units", "object")])
print(table_schema)