Fitting the model
Now that your model and parameters are ready, you'll initialize MLForecast and fit it to the time series data.
The model and params variables from the previous exercise are available, along with the ts DataFrame.
Este exercício faz parte do curso
Designing Forecasting Pipelines for Production
Instruções do exercício
- Create an
MLForecastinstance namedmlf. - Set the
freq,lags, anddate_featuresarguments using the respective keys from theparamsdictionary. - Fit the model to the
tsDataFrame.
Exercício interativo prático
Experimente este exercício completando este código de exemplo.
# Create an MLForecast instance
mlf = ____(
# Set the freq, lags, and date_features arguments
models=model,
freq=params["____"],
lags=params["____"],
date_features=params["____"]
)
# Fit mlf to the time series data
mlf.fit(____)