Defining the forecasting pipeline
Now you'll define the forecasting model and parameters for the MLForecast pipeline. This step prepares the model configuration that will be used for time series forecasting in the pipeline.
Este exercício faz parte do curso
Designing Forecasting Pipelines for Production
Instruções do exercício
- Import
LGBMRegressorfromlightgbm. - Instantiate a
LGBMRegressormodel with100estimators and a learning rate of0.05. - Create a dictionary named
paramsthat includes the frequency ("h"), lags (1-24), and date features ("month","day","dayofweek","week", and"hour").
Exercício interativo prático
Experimente este exercício completando este código de exemplo.
# Import LGBMRegressor from lightgbm
from ____ import ____
# Instantiate the model
model = ____(n_estimators=____, learning_rate=____)
# Set the model parameters
params = {
"freq": "____",
"lags": list(range(____, ____)),
"date_features": ["month", "day", "____", "____", "hour"]
}