ComeçarComece de graça

Visualizing forecast results

After defining and training models using backtesting, it's time to visualize the results. Visualization is a quick and effective way to assess model performance across partitions.

The ts and bkt_df DataFrames from previous exercises, along with the Plotly library, have already been preloaded for you. Let's explore how well our models performed!

Este exercício faz parte do curso

Designing Forecasting Pipelines for Production

Ver curso

Exercício interativo prático

Experimente este exercício completando este código de exemplo.

partitions_labels = bkt_df["cutoff"].unique()
ts_sub = ts[ts["ds"] > ts["ds"].max() - datetime.timedelta(hours=24 * 7)]

# Create subplots with four rows (one for each partition)
fig = make_subplots(rows=4, cols=1, subplot_titles=["Partitions: " + str(i) for i in partitions_labels])

r = 1  

for i in partitions_labels:
    if r == 1:
        showlegend = True
    else:
        showlegend = False
    bkt_sub = bkt_df[bkt_df["cutoff"] == i]
    # Add actual values to the plot
    fig.append_trace(go.Scatter(x=ts_sub["ds"], y=ts_sub["y"], legendgroup="actual", showlegend=showlegend, 
                                mode='lines', name='Actual', line=dict(color='#023047', width=2)), row=r, col=1)
    # Add k-nearest neighbors predictions
    fig.append_trace(go.Scatter(x=bkt_sub["ds"], y=bkt_sub["knn"], mode='lines', name='k-nearest neighbors', 
                                legendgroup="knn", showlegend=showlegend, line=dict(color='#2a9d8f', width=1.5, dash="dash")), row=r, col=1)
    # Add Multi-layer Perceptron predictions
    fig.append_trace(go.Scatter(x=bkt_sub["ds"], y=bkt_sub["mlp"], mode='lines', name='Multi-layer Perceptron', 
                                legendgroup="mlp", showlegend=showlegend, line=dict(color='#0077b6', width=1.5, dash="dot")), row=r, col=1)
    # Add ElasticNet predictions
    fig.append_trace(go.Scatter(x=bkt_sub["ds"], y=bkt_sub["enet"], mode='lines', name='ElasticNet', 
                                legendgroup="enet", showlegend=showlegend, line=dict(color='#ffc8dd', width=1.5, dash="dot")), row=r, col=1)
    r = r + 1 

fig.update_layout(height=500)
fig.show()
Editar e executar o código