ComeçarComece de graça

Searching experiment results

MLflow makes it easy to query the results of your experiments, helping you track model performance and hyperparameters.

Let's examine your most recent experiment, finding the model with the lowest Mean Absolute Percentage Error (MAPE).

Este exercício faz parte do curso

Designing Forecasting Pipelines for Production

Ver curso

Instruções do exercício

  • Search MLflow runs by the experiment_name.
  • Get the single best-performing model from all_results based on metrics.mape.
  • Print the subset of best_mape_model.

Exercício interativo prático

Experimente este exercício completando este código de exemplo.

experiment_name = "hyperparameter_tuning"

# Search MLflow runs
all_results = mlflow.____(experiment_names=[____])

# Filter for the model with the best MAPE score
best_mape_model = all_results.____("metrics.mape").head(____)

# Print the model
print(____[["params.model_name", "metrics.mape"]])
Editar e executar o código