MulaiMulai sekarang secara gratis

Performing data validation

Now that you've defined the schema, it's time to perform data validation. In this exercise, you'll create validation rules to ensure data quality and check for common issues like duplicates and null values.

The table_schema from the previous exercise is preloaded for you, along with the ts DataFrame and pointblank library.

Latihan ini adalah bagian dari kursus

Designing Forecasting Pipelines for Production

Lihat Kursus

Petunjuk latihan

  • Define validation using the right method and passing the ts DataFrame.
  • Set up validation rules with the table_schema and check for duplicates.
  • Print the validation report.

Latihan interaktif praktis

Cobalah latihan ini dengan menyelesaikan kode contoh berikut.

# Define the validation
validation = (pb.____(data=____,
tbl_name="US48 Data Validation",
label="Data Refresh",
thresholds=pb.Thresholds(warning=0.2, error=0, critical=0.1))
             
    # Set up the validation rules
    .col_schema_match(schema=____)
    .col_vals_gt(columns="value", value=0)
    .col_vals_in_set(columns="respondent", set = ["US48"])
    .col_vals_in_set(columns="type", set = ["D"])
    .col_vals_not_null(columns=["period", "value"])
    .____()
    .interrogate())

# Print the validation report
print(validation.____())
Edit dan Jalankan Kode