MulaiMulai sekarang secara gratis

Defining the schema

Let's start by defining the expected schema for data validation. This is a critical step in ensuring data quality throughout the ETL pipeline.

You'll use the pointblank library to define the schema structure.

The dataset has already been loaded for you as ts.

Latihan ini adalah bagian dari kursus

Designing Forecasting Pipelines for Production

Lihat Kursus

Petunjuk latihan

  • Start by importing pointblank.
  • Define the schema using the right method.
  • Set the respondent column to object type and value column to float64 type.

Latihan interaktif praktis

Cobalah latihan ini dengan menyelesaikan kode contoh berikut.

# Import the required library
import ____ as ____

# Define the schema and set columns
table_schema =  pb.____(
    columns=[
        ("period", "datetime64[ns]"),   
        ("respondent", "____"),
        ("respondent-name", "object"),
        ("type", "object"),
        ("type-name", "object"),
        ("value", "____"),
        ("value-units", "object")])

print(table_schema)
Edit dan Jalankan Kode