MulaiMulai sekarang secara gratis

Defining the forecasting pipeline

Now you'll define the forecasting model and parameters for the MLForecast pipeline. This step prepares the model configuration that will be used for time series forecasting in the pipeline.

Latihan ini adalah bagian dari kursus

Designing Forecasting Pipelines for Production

Lihat Kursus

Petunjuk latihan

  • Import LGBMRegressor from lightgbm.
  • Instantiate a LGBMRegressor model with 100 estimators and a learning rate of 0.05.
  • Create a dictionary named params that includes the frequency ("h"), lags (1-24), and date features ("month", "day", "dayofweek", "week", and "hour").

Latihan interaktif praktis

Cobalah latihan ini dengan menyelesaikan kode contoh berikut.

# Import LGBMRegressor from lightgbm
from ____ import ____

# Instantiate the model
model = ____(n_estimators=____, learning_rate=____)

# Set the model parameters
params = {
  "freq": "____",
  "lags": list(range(____, ____)),
  "date_features": ["month", "day", "____", "____", "hour"]
}
Edit dan Jalankan Kode