Defining the forecasting pipeline
Now you'll define the forecasting model and parameters for the MLForecast pipeline. This step prepares the model configuration that will be used for time series forecasting in the pipeline.
Latihan ini adalah bagian dari kursus
Designing Forecasting Pipelines for Production
Petunjuk latihan
- Import
LGBMRegressorfromlightgbm. - Instantiate a
LGBMRegressormodel with100estimators and a learning rate of0.05. - Create a dictionary named
paramsthat includes the frequency ("h"), lags (1-24), and date features ("month","day","dayofweek","week", and"hour").
Latihan interaktif praktis
Cobalah latihan ini dengan menyelesaikan kode contoh berikut.
# Import LGBMRegressor from lightgbm
from ____ import ____
# Instantiate the model
model = ____(n_estimators=____, learning_rate=____)
# Set the model parameters
params = {
"freq": "____",
"lags": list(range(____, ____)),
"date_features": ["month", "day", "____", "____", "hour"]
}