MulaiMulai sekarang secara gratis

Defining the forecasting models

As a data science consultant, you've been tasked with predicting US hourly electricity demand. Before diving into training and testing, you first need to define your machine learning models: ElasticNet, KNeighborsRegressor, and MLPRegressor. Then, you'll initialize the MLForecast object with key parameters.

To capture temporal dependencies, you'll regress the time series against the last 24 lags and include seasonal features like the day of the week and hour of the day. This setup will form the foundation for building robust forecasts.

Latihan ini adalah bagian dari kursus

Designing Forecasting Pipelines for Production

Lihat Kursus

Latihan interaktif praktis

Cobalah latihan ini dengan menyelesaikan kode contoh berikut.

from sklearn.neighbors import KNeighborsRegressor  
from sklearn.neural_network import MLPRegressor
from sklearn.linear_model import ElasticNet  

# Define machine learning models for forecasting
ml_models = {"knn": ____(), "mlp": ____(), "enet": ____()} 
Edit dan Jalankan Kode