MulaiMulai sekarang secara gratis

Logging tuned models

You have been experimenting with different model hyperparameters and need to log your latest round of experiment results to MLflow, let's do it!

Latihan ini adalah bagian dari kursus

Designing Forecasting Pipelines for Production

Lihat Kursus

Petunjuk latihan

  • Set the experiment name as "hyperparameter_tuning".
  • Loop over the index and rows of df.
  • Start an MLflow run.

Latihan interaktif praktis

Cobalah latihan ini dengan menyelesaikan kode contoh berikut.

# Set the experiment name
experiment_name = "____"
experiment_id = mlflow.create_experiment(experiment_name)

# Loop through the DataFrame
for idx, row in df.____():
  # Start a run
  with mlflow.____(experiment_id=____):
    model_params = ml_models[row["model_label"]].get_params()
    model_params["model_name"] = row["model_name"]
    model_params["model_label"] = row["model_label"]
    model_params["partition"] = row["partition"]
    model_params["lags"] = list(range(1, 24))
    model_params["date_features"] = ["month", "day", "dayofweek", "week", "hour"]
    mlflow.log_params(model_params)
    mlflow.log_metric("mape", row["mape"])
    mlflow.log_metric("rmse", row["rmse"])
Edit dan Jalankan Kode