Este ejercicio forma parte del curso
Aprenderá los conceptos básicos de este popular modelo estadístico, qué es la regresión y en qué se diferencian las regresiones lineal y logística. A continuación, aprenderá a ajustar modelos de regresión lineal simples con variables explicativas numéricas y categóricas, y a describir la relación entre la respuesta y las variables explicativas utilizando los coeficientes del modelo.
En este capítulo, descubrirás cómo utilizar modelos de regresión lineal para hacer predicciones sobre el precio de la vivienda en Taiwán y los clics en anuncios de Facebook. También aumentará sus conocimientos sobre regresión a medida que se familiarice con los objetos del modelo, comprenda el concepto de "regresión a la media" y aprenda a transformar variables en un conjunto de datos.
En este capítulo, aprenderá a plantear preguntas a su modelo para evaluar el ajuste. Aprenderá a cuantificar lo bien que se ajusta un modelo de regresión lineal, a diagnosticar los problemas del modelo mediante visualizaciones y a comprender la influencia de cada observación para crear el modelo.
Aprenda a ajustar modelos de regresión logística. Utilizando datos del mundo real, predecirá la probabilidad de que un cliente cierre su cuenta bancaria como probabilidades de éxito y odds ratios, y cuantificará el rendimiento del modelo utilizando matrices de confusión.
Ejercicio actual