ComenzarEmpieza gratis

Identificar el model drift

Ahora vas a trazar las puntuaciones del modelo a lo largo del tiempo para visualizar cuándo se produce drift. Al añadir la línea de umbral y las ventanas móviles de RMSE, podrás ver cómo las líneas de error recientes indican una degradación del rendimiento.

El conjunto de datos fc_log con las medias móviles calculadas, rmse_threshold, y Plotly como go ya están precargados para ti.

Este ejercicio forma parte del curso

Diseño de canalizaciones de predicción para producción

Ver curso

Ejercicio interactivo práctico

Prueba este ejercicio y completa el código de muestra.

p = go.Figure()

# Add RMSE line
p.add_trace(go.Scatter(x=fc_log["forecast_start"], y=fc_log["____"],
                        mode='lines',
                        name='RMSE',
                        line=dict(color='royalblue', width=2)))

# Add the RMSE rolling windows for 7 and 14 days
p.add_trace(go.Scatter(x=fc_log["forecast_start"], y=fc_log["____"],
                        mode='lines',
                        name='7 Days MA',
                        line=dict(color='green', width=2)))

p.add_trace(go.Scatter(x=fc_log["forecast_start"], y=fc_log["____"],
                        mode='lines',
                        name='14 Days MA',
                        line=dict(color='orange', width=2)))

p.add_trace(go.Scatter(x=[fc_log["forecast_start"].min(), fc_log["forecast_start"].max()], 
y=[rmse_threshold, rmse_threshold], 
name="Threshold",
line=dict(color="red", width=2, dash="dash")))

# Add plot titles and show the plot
p.update_layout(title="Forecast Error Rate Over Time",
                xaxis_title="____",
                yaxis_title="____", 
                height=400,
                title_x=0.5,
                margin=dict(t=50, b=50, l=50, r=50))
p.show()
Editar y ejecutar código