Get startedGet started for free

Visualizing the Adjusted Demographic Trends

Let's compare changes in borrowing across demographics over time. The data frame rydf you created in the last exercise is available in your workspace.

Note: We removed the row corresponding to "Not Avail".

This exercise is part of the course

Scalable Data Processing in R

View Course

Exercise instructions

tidyr and ggplot2 are loaded in your workspace.

  • Print the rydf and pop_proportion objects.
  • Convert rydf to a long-formatted data frame by gathering all columns except Race.
  • Create a line chart with Year and Adjusted_Count on the x and y axes, respectively.

Hands-on interactive exercise

Have a go at this exercise by completing this sample code.

# View rydf
___ 

# View pop_proportion
___

# Gather on all variables except Race
rydfl <- ___(rydf, ___, names_to = "Year", values_to = "Count")

# Create a new adjusted count variable
rydfl$Adjusted_Count <- rydfl$Count / pop_proportion[rydfl$Race]

# Plot
ggplot(rydfl, aes(x = ___, y = ___, group = Race, color = Race)) + 
    geom_line()
Edit and Run Code