Get startedGet started for free

Stacking RNN layers

Deep RNN models can have tens to hundreds of layers in order to achieve state-of-the-art results.

In this exercise, you will get a glimpse of how to create deep RNN models by stacking layers of LSTM cells one after the other.

To do this, you will set the return_sequences argument to True on the firsts two LSTM layers and to False on the last LSTM layer.

To create models with even more layers, you can keep adding them one after the other or create a function that uses the .add() method inside a loop to add many layers with few lines of code.

This exercise is part of the course

Recurrent Neural Networks (RNNs) for Language Modeling with Keras

View Course

Exercise instructions

  • Import the LSTM layer.
  • Return the sequences in the first two layers and don't return the sequences in the last LSTM layer.
  • Load the pre-trained weights.
  • Print the loss and accuracy obtained.

Hands-on interactive exercise

Have a go at this exercise by completing this sample code.

# Import the LSTM layer
from tensorflow.keras.layers import ____

# Build model
model = Sequential()
model.add(LSTM(units=128, input_shape=(None, 1), return_sequences=____))
model.add(LSTM(units=128, return_sequences=____))
model.add(LSTM(units=128, return_sequences=____))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

# Load pre-trained weights
model.____('lstm_stack_model_weights.h5')

____("Loss: %0.04f\nAccuracy: %0.04f" % tuple(model.evaluate(X_test, y_test, verbose=0)))
Edit and Run Code