Exercise

Z-score standardization

In the last exercise, you calculated the Z-score to address outliers. In a machine learning interview, another question might be where else Z-scores are used. They are often used for scaling your data prior to creating a model.

In this exercise you'll use a function from sklearn.preprocessing that was introduced in the video lesson to standardize the numeric feature columns in the loan_data dataset. Recall that this scales the data so that it has a mean of 0 and standard deviation of 1.

The sklearn.preprocessing module has already been imported for you.

Pipeline snapshot:

Machine learning pipeline

Instructions 1/4

undefined XP
    1
    2
    3
    4
  • Create a subset of the numeric and categorical columns in loan_data.