Mean carried forward
An alternative to last observation carried forward is to replace NA
s with the mean of all the previous non-NA
values. This is called mean carried forward. Again, R makes us choose between readability and speed. The following is written for readability:
na_meancf1 <- function(x) {
total_not_na <- 0
n_not_na <- 0
res <- x
for(i in seq_along(x)) {
if(is.na(x[i])) {
res[i] <- total_not_na / n_not_na
} else {
total_not_na <- total_not_na + x[i]
n_not_na <- n_not_na + 1
}
}
res
}
The iterative nature makes this tricky to vectorize, so instead, let's convert it to C++. Complete the definition of na_meancf2()
, a C++ translation of na_meancf1()
.
This exercise is part of the course
Optimizing R Code with Rcpp
Exercise instructions
- In the
if
condition, check if thei
th element ofx
is aNumericVector
'sNA
. - If the condition is true, set the
i
th result to the total of non-missing values,total_not_na
, divided by the number of missing values,n_not_na
. - Otherwise, increase
total_not_na
by thei
th element ofx
, and add1
ton_not_na
.
Hands-on interactive exercise
Have a go at this exercise by completing this sample code.
#include
using namespace Rcpp;
// [[Rcpp::export]]
NumericVector na_meancf2(NumericVector x) {
double total_not_na = 0.0;
double n_not_na = 0.0;
NumericVector res = clone(x);
int n = x.size();
for(int i = 0; i < n; i++) {
// If ith value of x is NA
if(___) {
// Set the ith result to the total of non-missing values
// divided by the number of non-missing values
res[i] = ___ / ___;
} else {
// Add the ith value of x to the total of non-missing values
___;
// Add 1 to the number of non-missing values
___;
}
}
return res;
}
/*** R
library(microbenchmark)
set.seed(42)
x <- rnorm(1e5)
x[sample(1e5, 100)] <- NA
microbenchmark(
na_meancf1(x),
na_meancf2(x),
times = 5
)
*/