Setting complexity of the motorcycle model
The number of basis functions in a smooth has a great impact on the shapes a model can take. Here, you'll practice modifying the number of basis functions in a model and examining the results.
This exercise is part of the course
Nonlinear Modeling with Generalized Additive Models (GAMs) in R
Exercise instructions
- Fit a GAM with 3 basis functions to the
mcycle
data, withaccel
as a smooth function oftimes
. - Fit the same GAM again, but this time with 20 basis functions.
- Use the provided
plot()
functions to visualize both models.
Hands-on interactive exercise
Have a go at this exercise by completing this sample code.
library(mgcv)
# Fit a GAM with 3 basis functions
gam_mod_k3 <- gam(accel ~ s(times, k = ___), data = mcycle)
# Fit with 20 basis functions
gam_mod_k20 <- gam(___)
# Visualize the GAMs
par(mfrow = c(1, 2))
plot(gam_mod_k3, residuals = TRUE, pch = 1)
plot(gam_mod_k20, residuals = TRUE, pch = 1)