Spark is a framework for working with Big Data. In this chapter you'll cover some background about Spark and Machine Learning. You'll then find out how to connect to Spark using Python and load CSV data.
Now that you are familiar with getting data into Spark, you'll move onto building two types of classification model: Decision Trees and Logistic Regression. You'll also find out about a few approaches to data preparation.
Next you'll learn to create Linear Regression models. You'll also find out how to augment your data by engineering new predictors as well as a robust approach to selecting only the most relevant predictors.
Finally you'll learn how to make your models more efficient. You'll find out how to use pipelines to make your code clearer and easier to maintain. Then you'll use cross-validation to better test your models and select good model parameters. Finally you'll dabble in two types of ensemble model.