Get startedGet started for free

Random forest with custom trainControl

Another one of my favorite models is the random forest, which combines an ensemble of non-linear decision trees into a highly flexible (and usually quite accurate) model.

Rather than using the classic randomForest package, you'll be using the ranger package, which is a re-implementation of randomForest that produces almost the exact same results, but is faster, more stable, and uses less memory. I highly recommend it as a starting point for random forest modeling in R.

This exercise is part of the course

Machine Learning with caret in R

View Course

Exercise instructions

churn_x and churn_y are loaded in your workspace.

  • Fit a random forest model to the churn dataset. Be sure to use myControl as the trainControl like you've done before and implement the "ranger" method.

Hands-on interactive exercise

Have a go at this exercise by completing this sample code.

# Fit random forest: model_rf
model_rf <- train(
  x = ___, 
  y = ___,
  metric = "ROC",
  method = ___,
  trControl = ___
)
Edit and Run Code