Get startedGet started for free

Matrix Multiplication as a Transformation

Matrices can be viewed as a way to transform collections of vectors into other vectors.

These transformations can take many forms, but the simplest ones in two dimensions are stretches or shrinkages (in either coordinate), reflections (e.g. about the x-axis, y-axis, origin, the line y = x), and rotations (clockwise, counter-clockwise).

Multiplication of a vector by a matrix is accomplished using the %*% command.

This exercise is part of the course

Linear Algebra for Data Science in R

View Course

Exercise instructions

  • Use matrix multiplication in R to show that multiplication by the matrix \(A\) with R output:
> A
     [,1] [,2]
[1,]    4    0
[2,]    0    1

stretches the x (first) component of the vector b <- c(1,1) by a factor of four.

  • Show that multiplication by the matrix \(B\) with R output:
> B
     [,1] [,2]
[1,]    1    0
[2,]    0    2/3

shrinks the y (second) component of the vector b <- c(1,1) by 33 percent.

Hands-on interactive exercise

Have a go at this exercise by completing this sample code.

# Multiply A by b
A ___ b

# Multiply B by b
___ ___ b
Edit and Run Code