What is logistic regression?

The model you'll be fitting in this chapter is called a logistic regression. This model is very similar to a linear regression, but instead of predicting a numeric variable, it predicts the probability (between 0 and 1) of an event.

To use this as a classification algorithm, all you have to do is assign a cutoff point to these probabilities. If the predicted probability is above the cutoff point, you classify that observation as a 'yes' (in this case, the flight being late), if it's below, you classify it as a 'no'!

You'll tune this model by testing different values for several hyperparameters. A hyperparameter is just a value in the model that's not estimated from the data, but rather is supplied by the user to maximize performance. For this course it's not necessary to understand the mathematics behind all of these values - what's important is that you'll try out a few different choices and pick the best one.

Why do you supply hyperparameters?

Answer the question
50 XP
Possible Answers
  • press
  • press
  • press