Find the global optimum
You've been provided with the following profit maximization problem and are tasked with finding the global maximum.
\(\Pi= -\frac{1}{4}q^4 + 11q^3 - 160q^2 + 900q\)
\(0\) is a natural lower bound for quantity and you observed that at \(q=30\) profit is negative, so \(30\) is a good candidate for upper bound.
Find the global optimum for this problem.
basinhopping
has been imported for you.
This exercise is part of the course
Introduction to Optimization in Python
Exercise instructions
- Define the dictionary
kwargs
of keyword arguments, with bounds \(0\) and \(30\). - Run
basinhopping
, with the objective as negative ofprofit
and the initial guessx0
passed to the minimizerkwargs
.
Hands-on interactive exercise
Have a go at this exercise by completing this sample code.
def profit(q):
return -q**4 / 4 + 11 * q**3 - 160 * q**2 + 900 * q
x0 = 0
# Define the keyword arguments for bounds
kwargs = {"bounds": [(____, ____)]}
# Run basinhopping to find the optimal quantity
result = basinhopping(____ q: -profit(q), ____, ____=kwargs)
print(f"{result.message}")
print(f"The maximum according to basinhopping(x0={x0}) is at {result.x[0]:.2f}\n")