1. Learn
  2. /
  3. Courses
  4. /
  5. Dimensionality Reduction in R

Exercise

Split out the train and test sets

The first step of training a model is dividing the data into train and test sets. The tidymodels package makes this easy. Setting aside a test data set allows you to evaluate the trained model on a set of data the model has never seen.

You will use the employee healthcare attrition data which contains data about employees of a healthcare company and whether they left the company or not. It is available in attrition_df. The target variable is Attrition.

The tidyverse and tidymodels packages have been loaded for you.

Instructions

100 XP
  • Initialize a split of the data with 80% for training and stratify based on Attrition, the target variable.
  • Extract the training data set and store it in train.
  • Extract the testing data set and store it in test.