Get startedGet started for free

Visualizing missing cases and variables

To get a clear picture of the missingness across variables and cases, use gg_miss_var() and gg_miss_case(). These are the visual counterpart to miss_var_summary() and miss_case_summary().

These can be split up into multiple plots with one for each category by choosing a variable to facet by.

This exercise is part of the course

Dealing With Missing Data in R

View Course

Exercise instructions

Using the riskfactors dataset:

  • Visualize the number of missings in cases using gg_miss_case().
  • Explore the number of missings in cases using gg_miss_case() and facet by the variable education.
  • Visualize the number of missings in variables using gg_miss_var().
  • Explore the number of missings in variables using gg_miss_var() and facet by the variable education.

What do you notice in the visualizations of the whole data compared to the faceting?

Hands-on interactive exercise

Have a go at this exercise by completing this sample code.

# Visualize the number of missings in cases using `gg_miss_case()`
gg_miss_case(___)

# Explore the number of missings in cases using `gg_miss_case()` 
# and facet by the variable `education`
gg_miss_case(___, facet = ___)

# Visualize the number of missings in variables using `gg_miss_var()`
gg_miss_var(___)

# Explore the number of missings in variables using `gg_miss_var()` 
# and facet by the variable `education`
___(___, facet = ___)
Edit and Run Code